Introduction

Here we presented the usage of FragPipeAnalystR to reproduce AP-MS analysis previously demonstrated in the manuscript. Note that in the manuscript, we used the FragPipeAnalyst website, but you could reproduce the same analysis with FragPipeR. You can download the example files from here. Files are in “AP-MS” folder.

Reading input files

library(FragPipeAnalystR)
## 
se <- make_se_from_files("/Users/hsiaoyi/Documents/workspace/FragPipeR_manuscript/data/AP-MS/combined_protein.tsv",
                         "/Users/hsiaoyi/Documents/workspace/FragPipeR_manuscript/data/AP-MS/experiment_annotation.tsv",
                         type = "LFQ", level = "protein")
print(head(rownames(se)))
## [1] "A0A075B6R9" "A0A075B6S2" "A0A0C4DH68" "A0A2R8Y4L2" "A0FGR8"    
## [6] "A0MZ66"
plot_pca(se)

plot_correlation_heatmap(se)

plot_missval_heatmap(se)

plot_feature_numbers(se)

colData(se)$condition
## [1] "CCND1"   "CCND1"   "CCND1"   "CONTROL" "CONTROL" "CONTROL" "CONTROL"

Imputation

imputed_se <- manual_impute(se)
plot_pca(imputed_se)

plot_correlation_heatmap(imputed_se)

Differential expression analysis

de_result <- test_limma(imputed_se, type = "all")
## Tested contrasts: CCND1_vs_CONTROL
de_result_updated <- add_rejections(de_result)
plot_volcano(de_result_updated, "CCND1_vs_CONTROL")

The volcano could be labelled in a different way via name_col argument of the function:

plot_volcano(de_result_updated, "CCND1_vs_CONTROL", name_col="Gene")

sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: aarch64-apple-darwin20
## Running under: macOS Ventura 13.4
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: America/Detroit
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices datasets  utils     methods   base     
## 
## other attached packages:
## [1] FragPipeAnalystR_1.0.5
## 
## loaded via a namespace (and not attached):
##   [1] RColorBrewer_1.1-3          rstudioapi_0.17.1          
##   [3] jsonlite_1.8.9              shape_1.4.6.1              
##   [5] MultiAssayExperiment_1.32.0 magrittr_2.0.3             
##   [7] ggtangle_0.0.6              farver_2.1.2               
##   [9] MALDIquant_1.22.3           rmarkdown_2.29             
##  [11] GlobalOptions_0.1.2         fs_1.6.5                   
##  [13] zlibbioc_1.52.0             vctrs_0.6.5                
##  [15] memoise_2.0.1               ggtree_3.14.0              
##  [17] htmltools_0.5.8.1           S4Arrays_1.6.0             
##  [19] gridGraphics_0.5-1          SparseArray_1.6.1          
##  [21] mzID_1.44.0                 sass_0.4.9                 
##  [23] bslib_0.9.0                 htmlwidgets_1.6.4          
##  [25] plyr_1.8.9                  plotly_4.10.4              
##  [27] impute_1.80.0               cachem_1.1.0               
##  [29] igraph_2.1.4                lifecycle_1.0.4            
##  [31] iterators_1.0.14            pkgconfig_2.0.3            
##  [33] gson_0.1.0                  Matrix_1.7-0               
##  [35] R6_2.5.1                    fastmap_1.2.0              
##  [37] GenomeInfoDbData_1.2.13     MatrixGenerics_1.18.1      
##  [39] clue_0.3-66                 fdrtool_1.2.18             
##  [41] aplot_0.2.4                 digest_0.6.37              
##  [43] enrichplot_1.26.6           pcaMethods_1.98.0          
##  [45] colorspace_2.1-1            patchwork_1.3.0            
##  [47] AnnotationDbi_1.68.0        S4Vectors_0.44.0           
##  [49] GenomicRanges_1.58.0        RSQLite_2.3.9              
##  [51] labeling_0.4.3              cytolib_2.18.2             
##  [53] httr_1.4.7                  abind_1.4-8                
##  [55] compiler_4.4.1              withr_3.0.2                
##  [57] bit64_4.6.0-1               doParallel_1.0.17          
##  [59] ConsensusClusterPlus_1.70.0 BiocParallel_1.40.0        
##  [61] DBI_1.2.3                   ExPosition_2.8.23          
##  [63] R.utils_2.12.3              MASS_7.3-60.2              
##  [65] prettyGraphs_2.1.6          DelayedArray_0.32.0        
##  [67] rjson_0.2.23                mzR_2.40.0                 
##  [69] tools_4.4.1                 PSMatch_1.10.0             
##  [71] ape_5.8-1                   R.oo_1.27.0                
##  [73] glue_1.8.0                  nlme_3.1-164               
##  [75] QFeatures_1.16.0            GOSemSim_2.32.0            
##  [77] grid_4.4.1                  cmapR_1.18.0               
##  [79] cluster_2.1.6               reshape2_1.4.4             
##  [81] fgsea_1.32.2                generics_0.1.3             
##  [83] gtable_0.3.6                tzdb_0.4.0                 
##  [85] R.methodsS3_1.8.2           preprocessCore_1.68.0      
##  [87] tidyr_1.3.1                 hms_1.1.3                  
##  [89] data.table_1.16.4           XVector_0.46.0             
##  [91] BiocGenerics_0.52.0         ggrepel_0.9.6              
##  [93] foreach_1.5.2               pillar_1.10.1              
##  [95] stringr_1.5.1               yulab.utils_0.2.0          
##  [97] limma_3.62.2                flowCore_2.18.0            
##  [99] circlize_0.4.16             splines_4.4.1              
## [101] dplyr_1.1.4                 treeio_1.30.0              
## [103] lattice_0.22-6              renv_1.1.0                 
## [105] bit_4.5.0.1                 RProtoBufLib_2.18.0        
## [107] tidyselect_1.2.1            GO.db_3.20.0               
## [109] ComplexHeatmap_2.22.0       Biostrings_2.74.1          
## [111] alluvial_0.1-2              knitr_1.49                 
## [113] IRanges_2.40.1              ProtGenerics_1.38.0        
## [115] SummarizedExperiment_1.36.0 stats4_4.4.1               
## [117] xfun_0.50                   Biobase_2.66.0             
## [119] statmod_1.5.0               MSnbase_2.32.0             
## [121] matrixStats_1.5.0           stringi_1.8.4              
## [123] UCSC.utils_1.2.0            ggfun_0.1.8                
## [125] lazyeval_0.2.2              yaml_2.3.10                
## [127] evaluate_1.0.3              codetools_0.2-20           
## [129] MsCoreUtils_1.18.0          tibble_3.2.1               
## [131] qvalue_2.38.0               BiocManager_1.30.25        
## [133] ggplotify_0.1.2             cli_3.6.3                  
## [135] affyio_1.76.0               munsell_0.5.1              
## [137] jquerylib_0.1.4             Rcpp_1.0.14                
## [139] GenomeInfoDb_1.42.3         png_0.1-8                  
## [141] XML_3.99-0.18               parallel_4.4.1             
## [143] assertthat_0.2.1            readr_2.1.5                
## [145] ggplot2_3.5.1               blob_1.2.4                 
## [147] clusterProfiler_4.14.4      DOSE_4.0.0                 
## [149] AnnotationFilter_1.30.0     viridisLite_0.4.2          
## [151] tidytree_0.4.6              scales_1.3.0               
## [153] affy_1.84.0                 ncdf4_1.23                 
## [155] purrr_1.0.2                 crayon_1.5.3               
## [157] GetoptLong_1.0.5            rlang_1.1.5                
## [159] cowplot_1.1.3               fastmatch_1.1-6            
## [161] vsn_3.74.0                  KEGGREST_1.46.0            
## [163] SNFtool_2.3.1